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Abstract-An experimental and numerical study of flow and heat transfer was conducted for a crossed- 
corrugated geometry, representative of compact heat exchangers under transitional and weakly turbulent 
conditions. Three-dimensional numerical predictions were obtained by a finite volume method using a 
variety of approaches ranging from laminar flow assumptions to standard and low-Reynolds number k-;: 
turbulence models, direct simulation, and large-eddy simulation. In this paper, the various computational 
approaches are presented and their relative performance is discussed for various geometries and Reynolds 
numbers; results are compared with experimental measurements and literature data. Detailed experimental 

results are presented in Part 1. 

1. INTRODUCTION 

1.1. Purposes of the present study 

The geometry considered here (Fig. 1) consists of 
plates which bear sine-wave corrugations and are 
closely packed at an angle on top of one another. It is 
completely specified by pitch P and internal height H, 

of the corrugations, angle 0, and wall thickness .Y. A 
complex flow and temperature field is established in 
the crossed-corrugated passages, which may result in 

high wall-fluid heat transfer rates with comparatively 
low pressure drops. 

Fig. 1. Cross-corrugated heat transfer elements. 

This geometry was selected as representative of various 
compact heat exchangers, including rotary air pre- 
heaters for fossil-fuelled power stations [I]. It was 

made the subject of a comprehensive experimental 
and predictive research program aimed both at inves- 
tigating the dependence of overall heat transfer and 
pressure drop on Reynolds number and geometrical 
parameters, and at determining the flow patterns in 
the corrugated passages and the distribution of the 
local heat transfer coefficient on the heat exchange 

surface as functions of the geometry and of the operat- 
ing conditions. 

Experimental work involved mainly local Nusselt 

number measurements by liquid crystal thermography 
(LCT). Wall pressure distributions were also mea- 
sured by pressure tappings, and preliminary inves- 
tigations of the flow field by particle-image vel- 
ocimetry were conducted. The main results of this 
study have been documented in a series of confidential 

reports [2] and are the subject of a companion paper 

[31. 
Here, we concentrate on the parallel numerical 

simulations relative to P/H, = 2 to 4, (3 = 30 to 150”. 
and Reynolds numbers in the range - lo’-104. 

1.2. Corrugution geometry and performuncr par- 

umeters 

Figure 2 shows a unitary cell of the heat exchange 
matrix, which was used as the computational domain 
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NOMENCLATURE 

-4 cross-section of unitary cell [ml] 

Aa length of unitary cell [m] 

A,, A,, A,,, n, co constants in the low-Re k- 
E model, see equation (20) 

A+ constant in Van Driest damping, see 
equation (22) 

c b Smagorinsky constant, see equation 

(21) 
c specific heat [J kgg’ Km’] 
;,(, C,,, Cr2, c~, or constants in the k--F model, 

see equation( 14) 

.? 

hydraulic diameter, 4S/V [m] 
equivalent friction coefficient, see 
equation (1) 

.f; near-wall damping factor, see equation 

(22) 
,f;,, ,f;, ,f; terms in the low-Re k-c: model, see 

equations (15)-( 17) 
F,; F,r, FZ ficitious body-force terms, see 

equation (25) [N m-‘1 

G mass flow rate in unitary cell [kg s-l] 

h convective heat transfer coefficient 
[w mm2 Km’] 

H total (external) height of corrugations 

b-4 
ff I internal height of corrugations [m] 
i,,j, k grid indices along three directions (also 

as subscripts) 
I, /, K number of cells along three directions 

.i Colburn factor, see equations (29a, b) 

k turbulence energy [m’s_*] 
f subgrid turbulence energy [m’ se21 
NM local Nusselt number, see equation (2) 

(Nu), Nn,, average Nusselt number, see 
equations (3a,b) 

P static pressure [Pa] 
]Ap] pressure drop in unitary cell [Pa] 

P pitch of corrugations [ml; modified 

pressure, p + (2/3)pk or p+ (2/3)pk” [Pa] 
Pr Prandtl number 

4 heat flux w m-‘1 
R thermal resistance [K m* W ‘1 
RT, R, turbulence Reynolds numbers, see 

equations (18) and (19) 

Re Reynolds number, iJD,,/v 
s plate thickness [m] 

s surface area of unitary cell [m’] 

S, fictitious heat sink term, see equation 

(26) [K ss’] 

Sl, strain rate tensor, (&,/&~,+f3u,/8~,)/2 

K’l 
SC Schmidt number 
Sh Sherwood number 
t time [s] 
At time step [s] 

T temperature [K] 

u mean velocity [m s- ‘1 

II,, U, u, 14’ velocity components [m s-‘1 

11, friction velocity, [(6]Appl)/(pAa)]“’ 
[m ss’] 

V internal volume of unitary cell [m’] 
,u,; x, y, Z Cartesian coordinates [m] 

y+ dimensionless distance from wall, 

)‘u,/v. 

Greek symbols 
thermal diffusivity [m’ s-‘1 
pressure gradient under-relaxation 
factor, see equation (28) 
auxiliary angle, n/4-6/2 
conventional channel half-height, 

&,/4 [ml 
mean size of generic grid cell [m] 
dissipation [m2 sm3] 
included angle between corrugations 
thermal conductivity [W m-’ Km’] 
kinematic viscosity [m’ s-‘1 
auxiliary coordinates [m] 
density [kg m-‘1 

Prandtl number 
generic variable 
quadratic invariant of strain rate 
tensor, 2 S,, S,, [s2]. 

Subscripts 
b thermo-static bath 
f fluid (air) 
i, j, k directions 
S subgrid (unresolved) 

t turbulent 
W wall. 

in the present numerical simulations. The reference The reference velocity U is defined as G/(pA,), G 
frame Oxyz used for the numerical simulations is also being the mass flow rate crossing the unitary cell and 
reported. Most computational results will be pre- A, = 2PH, sin (fI/2)/sin 0 the cross-sectional area nor- 
sented for the midplane and the two slices C-C, N-N mal to the main flow direction; the Reynolds number 
of the computational domain shown in Fig. 2(b))(d). Re can be based on this and on the hydraulic diameter 

The exchanger geometry and the choice of various D,, (4 x volume/wall surface of the unitary cell). 

thermal-hydraulic parameters are discussed in detail The pressure drop can be made dimensionless by 
in ref. [3]; only short definitions will be given here. defining the equivalent friction coefficient: 
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a b 

c-c N-N 

C d 

Fig. 2. Unitary cell (computational domain). (a) Perspective view; (b) section with midplane y = 0; (c) 
section CC parallel to the bottom corrugation; (d) section N-N normal to the top corrugation. 

f_ IAPk 
pAaU2/2 

in which IAppl is the pressure drop between the inlet 
faces D, W and the outlet faces U, E while Aa is the 
extent of the unitary cell along the main flow direction, 
see Fig. 2. 

As regards heat transfer, a local Nusselt number 
can be defined as: 

in which q,, is the local wall heat flux, r, is the local 
wall temperature, Tr is the average (mixing) fluid tem- 
perature and 1, is the thermal conductivity of the fluid. 
The mean Nusselt number, which characterizes the 

overall heat transfer effectiveness of the exchanger, 
can be defined in two different ways, i.e. either as: 

(3a) 

(S being the lateral surface of a unitary cell), or as: 

(3b) 

(qw) and ( Tu) being the surface-averaged wall heat 
flux and temperature, respectively. The second defi- 
nition is more appropriate as an engineering per- 
formance parameter. The two definitions coincide for 
a uniform wall temperature, a condition which is 
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a b 

Fig. 3. Smooth mapping of the computational domain onto a cuboid. (a) Computational domain (unitary 
cell); (b) equivalent cuboid; (c) inset showing replacement of line contact by surface contact at corners. 

closely approximated both in real exchangers and in 

the laboratory tests described here. 
Further details of the geometry of the problem and 

of the various thermohydraulic quantities that can be 
defined for it are given in ref. [3], which also contains 
a survey of flow and heat transfer results presented in 

the literature for this or related configurations. Here 
we will refer to results presented by Focke et al. [4] 
and Gaiser and Kottke [5], and to our own earlier 
results presented in refs. [&8]. 

from face D to U of Fig. 2(a), while k increases from 

one to K going from face W to E. The indexj increases 
from one to J going from the ‘trough’ of the lower 
corrugation to the ‘crest’ of the upper one. For sym- 
metry reasons, I = K here. The grid generation pro- 
cedure can be summarized as follows. 

2. MODELS AND METHODS 

Three-dimensional numerical simulations of fluid 
flow and heat transfer in the computational domain 

of Fig. 2 were obtained by the computer code Harwell- 
FLOW3D, Release 2 [9]. It is based on a finite differ- 

ence/finite volume technique, allowing for general 
body-fitted grids [lo]. The SIMPLEC pressureevel- 
ocity coupling algorithm [ 1 l] was used here. 

As a first step, an auxiliary two-dimensional grid 
was first built in the region PEBA of Fig. 3(a) by 

generating a regular rectangular grid in the mapped 
region P’E’B’A’ of Fig. 3(b) and then distorting it as 
shown in Fig. 4. More precisely, local coordinates 5 
and VI were introduced in the plane of face D; point E 
(mapping the corner E’ of the equivalent cube) was 
arbitrarily located along the tract of sinusoid PB (the 
choice cE = (2/3)PA was found to be effective); and 
the final positions of grid points lying on the boundary 
PEBAP were prescribed by subdividing the two tracts 
PA and EB (linesj = constant) into N: equal intervals 
and the two tracts PE and AB (lines k = constant) 

Three basic aspects of the simulations will be dis- 
cussed in the following, namely: the generation of a 
computational grid; the treatment of turbulence; and 
the boundary conditions of the problem. Accuracy 
considerations and computational aspects will also be 

mentioned briefly. 

2.1. Computational grid 
The computational domain of Fig. 2 was covered 

with a three-dimensional array of hexahedral control 
volumes (i.e. with a ‘structured’, body-fitted grid) by 
taking advantage of the fact that it can be mapped 
smoothly into a cuboid having two inlet and two out- 
let half-faces (Fig. 3), and is symmetric with respect 
to a 180” rotation around the main flow direction. In 
order to avoid singularities in the mapping, the line 
contact between the upper and the lower plate had to 
be replaced by a thin surface contact (see inset in Fig. 
3); its width was arbitrarily chosen to be equal to the 
plate thickness s. 

A generic control volume of the grid is identified by Fig. 4. Generation of an auxiliary two-dimensional grid on 
three indices i, j, k; i increases from one to I going an inlet (outlet) face. 
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into N, equal intervals. Now, the coordinates of inner 

grid points were computed by the simple iterative pro- 

cedure, starting from a uniform rectangular grid in 

PEBA: 

5k,, = $(r,U,,-, +&,,-, f5k+l.,-1 +5k-,,,+t5k+I,, 

+5k--l.,+l +&.,+, +<k+,.,+,) (4a) 

+%+l,,+~kLI,,+I +%,+I +I?k+l,,+l) (4b) 

i.e. by computing the grid point coordinates at each 
iteration as the average of those of the eight neigh- 
bours at the previous one. This is basically equivalent 

to solving a Laplace equation for 5, q and is similar 
to the grid-generation method used, for example, by 
Amsden and Hirt [ 121. The method converged quickly 
to smooth body-fitted grids like that in Fig. 4; typi- 

cally, consecutive approximations differed by less than 
one part in 10’ after - 100 iterations. Convergence 
problems were never observed. Practically identical 
results were obtained if the four ‘diagonal’ points were 

omitted from the summations in equations (4a,b). 
Now, additional layers of control volumes in the 

solid wall, and a final layer of ‘dummy’ control 
volumes surrounding the body (used to set boundary 
conditions in the computational method used), were 
added by simple algebraic formulae. The explicit res- 
olution of the solid wall is necessary, of course, only 
if conduction in it is to be taken into account; this was 
not made in the present simulations, but a single layer 
of control volumes in the wall was provided for sake 
of generality. 

Finally, the resulting two-dimensional grid was 
mirror-reflexed, translated and rotated as necessary 
to span the whole three-dimensional computational 

domain (unitary cell of the exchanger). Final formulae 
for the coordinates of grid points (control volume 
corners) in the reference frame O_X~Z of Fig. 2 are: 

upper corrugation y > 0 (i = 1 to I+ I, j = J/2 + 1 to 

J+l,k= 1 toK+l): 

x,,,,k = th,l-J ? sin y+ &.1 '3s 7 (5a) 

??r.,.k = qh,,pJ,.2 (5b) 

Z r,,.k = th&z cosy+ t,., sin i' (5c) 

lower corrugation y < 0 (i = 1 to I+ 1, ,j = I to J/2, 
k= 1 toK+l): 

x r./.k = &, sin~+<,.J;z+z_,cos~ (6a) 

J,,,.h = -qk.,-J,Z (6b) 

7 
+,,.k = lk., ~0s ;' + Lztzm, sin Y (6~) 

in which ‘J = 7-c/4-0/2. An example of the resulting 

a) 

b) 

Fig. 5. Three-dimensional grid. (a) Laminar flow, low-Re 
turbulence model, direct and large-eddy simulation; (b) stan- 

dard k-i: turbulence model with ‘wall functions’. 

three-dimensional grid is reported in Fig. 5(a) for the 
case I = J = K = 32, 6’ = 45”, P/H = 3.66. The solid 
(wall) region is evidenced. The only reservation is the 
strong non-orthogonality of the grid in the regions 
near the corners (points like E in Figs. 3 and 4); no 
simple way out of this problem could be found with 

structured grids, and probably this shortcoming could 
be eliminated only by recourse to multiblock or 
unstructured grids (the latter are possible, for exam- 
ple, in the latest release of the same computer code 
used here). 

Grids generated by the above procedure are appro- 
priate either for direct and large-eddy simulations or 
for conventional, steady-state simulations based on 
laminar flow assumptions or on a low-Reynolds num- 
ber turbulence model. However, they are not suitable 

for simulations using the high-Reynolds number ver- 
sion of the k--E model in conjunction with the ‘wall 
function’ approach. In fact, this treatment requires 
that the near-wall grid points (control volume cen- 
troids) lie well out of the viscous sublayer (say, 
?‘+ = 1 l), while it is easy to show that, for the mod- 
erate Reynolds numbers considered here (Re < 104), 
the latter covers a significant fraction of the whole 
computational domain (for example, values of y+ of 

about two to three would be obtained for most near- 
wall centroids using the grid of Fig. 5(a) at 
Re - 3000). Thus, when k-s/‘wall-function’ simu- 

lations were conducted the grid-generation procedure 
was suitably modified: the wall-adjacent layer of con- 
trol volumes was generated algebraically so that it had 
an (approximately) uniform thickness 6, while the 
iterative algorithm described above was restricted to 
the inner control volumes. A typical result is shown 
in Fig. 5(b) for the same corrugation geometry of Fig. 
5(a); here, I = J = K = 24 and S/H = 0.2. 
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2.2. Governing equations and turbulence modelling 
At the Reynolds numbers considered here (and par- 

ticularly in the range 150&3000 which is typical of 
rotary regenerators) transitional flow is expected. As 
is well known, such flows are very difficult to simulate 

by conventional models; for example, even ‘low-Reyn- 
olds number’ turbulence models can predict with some 
accuracy whether the flow will be laminar or turbulent 
only for the simplest geometries, and such a capability 

is probably out of question for the complex geometry 
studied here. 

In order to circumvent-at least partially-this 

difficulty, predictions were obtained and compared 

using a variety of modelling approaches, including: 
(a) laminar flow assumptions; (b) the standard k- 
E turbulence model with ‘wall functions’; (c) a low- 
Reynolds number k--E model; (d) direct simulations; 
and (e) large-eddy simulations. 

In all cases, the continuity, momentum (Navier- 

Stokes) and temperature equations can be sum- 
marized as follows: 

(8) 

g+z=g [ 1 f+? g+s,. (9) 
I I t I 

They are valid for an incompressible, constant-prop- 
erty fluid, are written in ‘conservation’ form and ten- 
sorial notation, and make use of Einstein’s convention 
of implied summation over repeated indices. The 
terms F, (i = 1 and 3, corresponding to the axes x and 
z of Fig. 2) are fictitious body forces added only in 

periodic-flow simulations (see below) in order to 
account for mean pressure gradients along the cor- 
rugations. S, is a fictitious sink term added for similar 
purposes to the right-hand side of the energy equation. 

The various equations undergo appropriate modi- 
fications according to the modelling approach used, 
as discussed below. 

Let us consider first conventional, steady-state 
simulations [models (a)-(c)]. Of course, time deriva- 
tives were dropped in equations (7)-(9). Terms con- 
taining the turbulent viscosity v, were dropped in lami- 
nar simulations, while the expression used for vt, and 
the transport equations for k and E, used in turbulent 
flow simulations can be summarized both for the stan- 
dard (high-Reynolds number) k--E model, and for the 
low-Reynolds number version used here, as follows: 

(10) 

+&y-E (11) 

(12) 

The term ‘I’ is the quadratic invariant of the strain 

rate tensor S,, = (auf/ax, + au,/ax,)/2, proportional to 
the production of turbulence energy due to shear: 

Y = 2s,s,. (13) 

The value 0.9 was used for the turbulent Prandtl num- 

ber crt in equation (9). The ‘standard’ constants C,,, 
C,,, CF2, ok and 6, were given the ‘consensus’ values 

[13]: 

C,, = 0.09 C,, = 1.44 C,, = 1.92 

ak = 1.00 a, = 1.3. (14) 

In the standard (high-Reynolds number) version of 

the turbulence model, f, =f, = f2 = 1. On the other 
hand, in the low-Reynolds number turbulence model 
used (basically identical to that proposed by Lam and 
Bremhorst [ 141): 

.r; = [l -exp (-4&)12U +&I&) (15) 

fi = 1+ &,lf,)” (16) 

fi = I-c,exp(-R:) (17) 

in which the ‘turbulence Reynolds numbers’ RT and 
R, are defined as follows: 

R, = k2/(vE) (18) 

R, = k”2y/v. (19) 

Thus, the low-Reynolds number model involves five 
extra constants A,, A,, A,,, n and c0 for which the 
values proposed in ref. [ 141 were used: 

A, = 0.0165 A, = 20.5 A,, = 0.05 

n=3 c,=l. (20) 

The above low-Reynolds number turbulence model 
was chosen because it was found to give good per- 
formances for channel flows in a comparison study 
[ 151 and was easily implemented in the code [ 161. 

In simulations based either on laminar flow assump- 

tions or on the low-Reynolds number turbulence 
model ordinary no-slip conditions were used at walls 
for the momentum equations, and similar conditions 
(based on a linear flux-temperature relation) for the 
temperature equation. On the other hand, when the 
standard k--E turbulence model was used, linear-log- 
arithmic ‘wall functions’ were used to ‘bridge’ the 
viscous and conductive sublayer; details of these are 
given by Burns et al. [9] and are basically as proposed 
by Launder and Spalding [13]. Finally, note that in 
turbulent-flow simulations P includes the static pres- 
sure p and the mean normal Reynolds stress, (2/3)pk. 

Actually, laminar simulations were conducted only 
for Re < 5000, as the assumption of laminar flow 
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would be unrealistic at higher Reynolds number. For 
symmetric reasons, standard k-s/wall function simu- 

lations were conducted only for Re 2 2000 (however, 
the requirement that the near-wall grid points lie out- 
side of the viscous sublayer would lead to unac- 
ceptably coarse grids for lower Reynolds numbers). 
Even with these limitations, there is a broad range 
of Reynolds numbers (-2000-5000) in which both 
models were used; as discussed below, the comparison 
of laminar and turbulent predictions with exper- 
imental data was found to be very helpful in under- 
standing transitional phenomena and interpreting the 

experimental results themselves. Also, in the common 
range laminar and turbulent predictions provide lower 

and upper bounds, respectively, for quantities like ,f 
and Nu,,. The low-Reynolds number turbulence 
model was used throughout the range Re = lOO& 
10 000, although convergence was found very difficult 
to attain for Re > 4000 (requiring a large number of 

iterations and thus of computing time). 
In direct and large-eddy turbulent simulations 

[models (d) and (e)], transient terms in equations (7)- 
(9) were, of course, retained. In the former case, u,, P 
and T were just the instantaneous fields, and 
additional terms containing L’, were not present. In 

large-eddy simulations u,, P and Tmust be interpreted 
as resolved, i.e. large-scale (grid-scale) fields; P is also 
inclusive of the term (2/3)pi (ff being the unresolved, 
or subgrid, turbulence energy). The eddy viscosity rt 
was replaced by the subgrid viscosity, expressed by 
the Smagorinsky-Lilly model [ 17, 181: 

v, = (c&,A)‘(2S,,S,,)‘~*. (21) 

For the constant cs the value of 0.08 was used on the 
basis of previous experience with plane- and ribbed- 
channel flows [ 191. A is the average size of the generic 
grid cell (cubic root of its volume), S,, is the strain rate 
tensor introduced above andf;, is the Van Driest near- 
wall damping function [20]: 

fw = l-exp(-y+/A+) (22) 

used here with A+ = 25. The eddy heat diffusivity 
t(, = v,/o, was replaced by the subgrid heat diffusivity 
CI, = v,/g,, computed by assuming err (subgrid Prandtl 
number) = 0.5. Direct simulations were simply 
obtained by setting c, = 0. 

An a priori requisite for the direct simulation of 
turbulent channel flows, suggested for example by 
Grotzbach [21] on the basis of an analysis by Chap- 
man [22], is that the viscous sublayer )‘+ < 11 be 
resolved by at least three grid points. On the basis of 
local wall shear stress values from preliminary numeri- 
cal experiments, it appeared that with a 32’-volume 
grid this criterion is just satisfied for @ = 37” and 
Re = 2000; for larger Re or 8, as the wall shear stress 
increases and the sublayer becomes thinner, either 
finer grids or a subgrid model [large-eddy simulation 
(LES)] should become necessary. 

By analogy with plane-channel flows [19], the large- 

eddy time scale, or LETOT (large-eddy turnover time) 

was defined as 6/u,, where 6 = D,,/4 is a ‘conventional’ 
channel half-height and u, = [(6]Appl)/(pA~)]“‘~ is a 

‘conventional’ friction velocity. 
Most simulations were protracted for five LETOTs, 

using the last two for averaging purposes. Central 
differencing of advection terms, and Crank-Nicolson 
time-stepping, were used. The time step At was set 
to l/SO (LETOT); results obtained using At = l/l00 
(LETOT) did not differ significantly. 

2.3. Boundary and initial conditions 
Two different sets of boundary conditions were used 

on the inlet-outlet faces U,D,E,W of the unitary cell 

(Fig. 2). 
In the first approach, these faces were defined as 

periodicity surfaces, i.e. surfaces on which the flow 
variables repeat themselves in a periodic fashion from 
face D to U and from W to E. In discrete form, this 
is equivalent to imposing for each flow variable @ the 
conditions: 

@ I.,,k = @)I- I.,,k (234 

Wb) 

for D-U periodicity, and: 

for E-W periodicity. 
If periodic boundary conditions are imposed, then 

the intrinsically non-periodic quantities P and T must 

be replaced by their periodic components (i.e. ‘true’ P 
and T plus a term varying linearly along the main 
flow direction). Pressure losses have to be balanced 

by including on the right-hand side of the momentum 
equation (8), for the x and z directions (i.e. i = 1 and 
3, respectively), the source terms (components of the 
driving pressure gradient): 

F,=F:=$$. (25) 

Similarly heat addition/subtraction to and from the 
fluid has to be balanced by including on the right- 

hand side of the energy equation (9) the source/sink 
term: 

qw dS (26) 

in which u and M’ are the (local) velocity components 

along x and z, respectively, while cp is the specific heat 
of the fluid. 

This first method is appropriate to simulate the 
flow and temperature fields in the generic cell of the 
exchanger, away from intakes (fully developed con- 
ditions). The measurement cell in the wind-tunnel test 
section can be legitimately treated under these 
assumptions [3]. 
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In the second approach, faces D and W in Fig. 2 
were defined as inlets, i.e. surfaces on which the values 
of all flow variables except pressure were specified 
(Dirichlet boundary conditions), while the opposite 
faces U and E were treated as outlets, on which zero- 
normal derivative (Neumann) conditions were 

imposed on the same quantities. The heat exchanger 
matrix of a rotary regenerator, as well as the wind- 
tunnel test section simulating this, can be considered 

as composed of identical ‘paths’ of consecutive cells. 
For the first (entrance) cell of any path, uniform inlet 
velocity profiles, aligned with the upper corrugation 
on face D and with the lower one on face W, were 
assumed; this seems a reasonable approximation of 
the actual entry conditions. Sensible values of k and 

E, representative of the inlet flow conditions, had also 
to be assumed in k--E, turbulent-flow simulations (with 
both the standard and the low-Reynolds number 
models). The outlet distributions computed for this 
cell can now be used as inlet conditions for the next 

one, and so on. 
Within the validity of the approximation of 

assuming zero-normal derivative conditions on the 
outlet faces, this method gives the distribution of head 
losses, heat transfer coefficients, etc. along consecutive 
cells from the entrance, thus allowing the assessment 
of entry effects and the simulation of not fully 

developed situations (as occurred in a previous, smal- 
ler test rig). As more and more consecutive cells are 
considered, results are expected to approach those 
obtained under periodicity assumptions. 

In direct or large-eddy simulations, this latter 
approach was not tested, as it would have required 
the complex task of setting an appropriate, time- 
dependent, inlet flow, and only periodic (fully 
developed) simulations were conducted. 

Hydrodynamic wall boundary conditions were 
ordinary no-slip for laminar and low-Reynolds num- 
ber turbulent flow simulations, and standard ‘wall 
functions’ for k--E simulations. Ordinary no-slip con- 

ditions were also used in the case of direct simulations, 
in which the viscous sublayer y+ < 11 was resolved 
by at least two or three grid points (they amount to 
the assumption of a linear relationship between the 
wall shear stress and the near-wall parallel velocity, as 
well as between the wall heat flux and the wall-to-cell 
temperature drop). In large-eddy simulations, 
however, more general wall boundary conditions were 
adopted, based on the assumption that universal vel- 
ocity and temperature profiles hold locally [ 191. For 
near-wall grid points lying within the laminar sublayer 
these reduce themselves to ordinary no-slip 
conditions, while for near-wall grid points lying in 
the turbulent region _v+ > 11 they are similar to the 
‘synthetic’ wall boundary conditions adopted for stan- 
dard k--E simulations. 

As regards thermal boundary conditions, the ones 
closest to those prevailing in real air heat exchangers 
are uniform wall temperature conditions, which were 
thus adopted in most runs. Uniform wall heat flux 

conditions were also tested, and gave-as expected- 
slightly larger values of the mean heat transfer 
coefficients. Finally, in order to draw comparisons of 
the results with experimental liquid-crystal ther- 
mography (LCT) data, a third kind of thermal bound- 
ary conditions was used: the bottom wall was assumed 
to be adiabatic: 

qw = 0 (bottom wall) (27a) 

while on the opposite wall the following condition was 
imposed: 

qw = (T, - T,)/R (top wall). (27b) 

This simulates the conditions holding in the exper- 
imental setup, where T, = constant temperature of the 

water bath cooling the outer side of the top corrugated 
plate and R = thermal resistance of the plate + liquid 
crystal package. 

Steady-state periodic simulations were run by 
imposing the Reynolds number, Re’ and adjusting 
the driving pressure gradient lAppI at each SIMPLEC 
iteration (following a ‘settling’ phase of about 100 

iterations) according to the actual Reynolds number 
Re, as follows: 

IAPI (“+ = (1 -~)IApI,I’“‘d’+~~Ap~‘“‘d)Re”/Re (28) 

p being an under-relaxation factor which was set to 
0.9 in most cases. A typical result is shown in Fig. 6 
for a periodic laminar flow simulation at P/H, = 4, 
B = 37”, Re’ = 1000. 

As for the initial conditions, the fastest convergence 
was generally obtained by simply assuming zero vel- 
ocity everywhere in the computational domain. In 
turbulent flow simulations, sensible initial levels of 
turbulence energy and dissipation had to be set; in 
most cases, the choice was k” = 0.003 U’, 
E’ = 1 S(k0)3!2/D,,. 

In direct and large-eddy (transient) simulations, in 
order to avoid the introduction of spurious flow and 
pressure oscillations, the pressure drop lApI was 
imposed, while the flow rate was left free of adjusting 

itself to a corresponding equilibrium value. A sensible 
estimate Re’ = U’D,,/v was chosen for the initial 
Reynolds number; initial conditions were set by 
assuming, in the top and bottom ducts, a plug velocity 
equal to U”jcos(Qj2) and directed along the cor- 
responding corrugation, and superimposing ran- 

domly-generated three-dimensional fluctuations of 
the order of u,. The exact initial fluctuation level was 
found not to be relevant; also, the fact that the initial 
flow field was not divergence-free did not constitute a 
problem for the solution method used here. 

2.4. Further computational details 
All simulations were conducted using the SIM- 

PLEC pressure-velocity coupling algorithm. For 
steady-state simulations, from 300 to 600 iterations 
were typically required in inlet-outlet (developing 
flow) runs, and from 750 to 1200 under periodicity 
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Fig. 6. Behaviour of Rr and IAppl in an iterative computation of periodic (fully developed) flow. 

(fully developed flow) assumptions, for a satisfactory 
convergency to be achieved. At the highest Reynolds 
numbers (Re > 3000) small under-relaxation factors 
(0.2-0.3) had to be used with all models to avoid 
computational instabilities. With a 323-volume com- 
putational grid, central processing unit (CPU) times 
were from 20 to 30 s iteration-’ on the IBM 3090- 

2005 of the University of Palermo Computing Centre 
(used without the Vector Facility option). Thus, typi- 
cal CPU times were around 8 h for the simulation of 
fully developed flow under laminar or low-Re tur- 
bulent conditions, for each combination of Rr, 8 and 
P/H. Since coarser grids (24’ volumes) were used for 
k-s/‘wall-function’ simulations, CPU times were cor- 
respondingly lower (about 10 s iteration’). 

For transient, direct and large-eddy simulations, 
SIMPLEC was used with just 10 iterations per time 

step. As discussed above, most simulations were pro- 
tracted for five LETOTs using 50 time steps per 
LETOT; thus, a typical run required 2500 overall 
SIMPLEC iterations. However, due to the better con- 
vergence of the linearized equation solvers, the CPU 
time required per iteration was sensibly less than in 
steady-state computations, and-using the same 32j- 
volume computational grid-overall CPU times were 
only slightly larger than those required for laminar or 
low-Re k--E runs (about 10 h). 

On the whole, the CPU time required for the com- 
putational part of the present study was well above 
1000 h of IBM 3090-2005. 

3. RESULTS AND DISCUSSION 

3.1. Pressure drop 

Laminar simulations underpredictfover the whole 
angle range, the severest errors being associated with 
the largest 0. for which a laminar treatment is obvi- 

ously inadequate (highly perturbed flow). Standard 
or low-Re k-c: results exhibit a similar dependence on 
0; they both tend to overpredictfslightly at low angles 

and to underpredict it at high angles. The behaviour 
of the experimental data suggests transition to tur- 
bulence at angles between 37 and 45”. The best pre- 
diction of the angle dependence of the friction 
coefficient is given by LES, which, however, under- 
predictsfshghtly over the whole range of 0. 

3.1.1. Fully developed ,fro~. The behaviour of the A comparison of low-Reynolds number k-c pre- 
equivalent friction coefficient f’ as a function of the dictions of the friction coefficient with experimental 
Reynolds number for fully developed (periodic) flow results from the literature is given in Fig. 8 for 

is reported in Fig. 7(a) for P/H, = 4 and B = 37”. 

Predictions obtained by using laminar flow assump- 
tions, the standard k--E method with ‘wall functions’, 
the low-Reynolds number turbulence model, and 
large-eddy simulation, are compared with the exper- 
imental data of Stasiek et al. [2]. 

Laminar and standard k--E computations are un- 
satisfactory, as they respectively underpredict and 
overpredictfover most of the Reynolds number range 
of application. Laminar flow simulations overpredict 

the Reynolds number dependence of the friction 
coefficient: they give a Re-’ behaviour, while the 

experimental data exhibit an Re-” trend. The best 
agreement with the experimental data and with their 
dependence on Re is obtained by using either the low- 
Reynolds number turbulence model, or LES. Both 
methods give results which correctly tend to the lami- 
nar and to the k--E ones, respectively, in the limit of 

very low or very high Reynolds numbers. 
The predicted dependence offon the included angle 

0 is reported in Fig. 7(b) for P/H, = 4 and Re = 3000. 
As in Fig. 7(a), results from all the computational 

approaches tested are shown. 
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Fig. 7. Predicted vs experimental equivalent friction coefficient for P/H, = 4 (fully developed flow): (a) as 
a function of the Reynolds number for 0 = 37”; (b) as a function of the included angle for Re = 3000. 

P/H, z 2, Re z 2000 and 0 varying between 0 and 
180”. Note that for very small or very large included 
angles the computational domain becomes excessively 
distorted; therefore, numerical simulations were only 
conducted for Q = 3&150”. Over this wide range of 
angles, the overall behaviour off is predicted fairly 
well; it should be observed that f increases by more 
than two orders of magnitude when 0 increases from 
0 (corrugated ducts parallel to the main flow) to 180” 
(ducts normal to the main flow). As will be discussed 
in Section 3.3, some results-in particular those of 
Focke et al. [4]-indicate the presence of a maximum 
inffor f3 z 150-160”. 

3.1.2. Developing flow (entry effects). Entry effects 
are shown in Fig. 9. The equivalent friction coefficient 

f predicted by using various modelling approaches is 
reported as a function of the cell number from the 
intake for P/H, = 3.61, Re z 3400 and 8 = 36”. The 
computational method for developing flow is that 
described in Section 2.3. As mentioned already, pre- 
dictions for developing flow were not obtained in the 
case of direct and large-eddy simulation, for which 
only periodic flow was considered. The geometry is 
that of the first test section studied in the City Uni- 
versity wind tunnel [2]; corresponding experimental 
values of ,f for cells 1 and 2, obtained by static wall 
pressure tappings, are reported in Fig. 9 for com- 
parison purposes. The experimental value for cell 5 
is from the similar geometry A described in ref. [3] 
(P/H, = 4, 0 = 37”). 
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results for P/H, zz 2 and Re z 2000. 

The best predictions of the development of J 
through consecutive cells are given by the low-Reyn- 
olds number turbulence model, which reproduces 
satisfactorily also the fully developed value off. Sur- 
prisingly, laminar simulations underpredict ,f but 
reproduce comparably well its rapid decrease along 
the first cells. Standard k--E simulations overpredict 
only slightly the fully developed friction coefficient, 
but fail completely to predict entry effects, giving a 
practically constant value from the first cell on. This 
shortcoming may have been enhanced by the coarse- 
ness of the grid used (24’ control volumes against the 
323 adopted for laminar and low-Re k-c runs). 

It should be observed that, in real exchangers. the 
fluid entering the heat transfer matrix is subjected in 
the entry region to an abrupt change of direction and 
cross-sectional area; these effects make the dissipative 
head loss in the first cells different from the static 

pressure drop, and thus not adequately described by 
the friction coefficient defined by equation (1). 
However, numerical and experimental results suggest 
that significant entry effects interest only the first few 
cells, and thus are negligible in large exchangers 
(rotary air preheaters); they may play a larger role in 

P,‘HI=4, theta=37, Re=3200 i_ 
?i 

0 1 2 3 4 5 
Call number %rlodlc 

Fig. 9. Friction coefficient in consecutive cells for 
P/H, = 3.67, B= 36 and Re z 3400. (A) Experimental 
results by Stasiek et al. [2]: (-) laminar flow; (- ~ -) stan- 
dard k--E model with ‘wall functions’; (‘.‘) low-Re tur- 

bulence model. 

small regenerative exchangers such as those used in 

internal combustion engines. 

3.2. Heat transfer 
3.2.1. Fully dmeloped ,fioMj.The average Nusselt 

number (Nu) for fully developed (periodic) flow is 
reported as a function of the Reynolds number in Fig 
10(a) for P/H, = 4 and 0 = 37”. As in Fig. 7(a), this 
includes results from laminar flow assumptions, stan- 
dard and low-Reynolds number k-t: simulations and 
large-eddy simulations. Experimental data of Stasiek 
et al. [2], obtained by LCT, are also shown. 

As in the case of the friction coefficient, laminar 
and standard k--E results are not satisfactory, as they 
respectively underpredict and overpredict (Nu) over 
most of the range considered. The dependence of 
(Nu) on Re is grossly underpredicted by laminar 
simulations, which give only a slight increase of (Nu) 
against an experimental trend which can be described 
by an -2/3-power law [3]. Standard k-c-: simulations 
give results only slightly above the experimental data 
at the highest Reynolds numbers (- SOOO), but over- 
predict (Nu) more seriously at Re z 200&3000. For 
these Reynolds numbers, even with the relatively 
coarse grid used (see Section 2. I), several grid points 

lie within the viscous-conductive sublayer and con- 
tribute a spurious overprediction of ( Nu); therefore, 
k-s simulations cannot be extended to lower values of 
Re. 

The best agreement with the experiments is 
obtained again by using the low-Reynolds number 
turbulence model or LES. Both possess the correct 
asymptotic behaviour and give results intermediate 
between laminar and standard k--E ones. LES results, 
in particular, reproduce satisfactorily the Reynolds 
number dependence of the data. 

The dependence of (Nu) on the included angle B 
is shown in Fig. IO(b) for P/H, = 4 and Re = 3000. 

Laminar simulations grossly underpredict (Nu) over 
the whole angle range; the low-Reynolds number k-c: 
model gives only a moderate underprediction, and 
LES gives the best results, reproducing the exper- 

imental values of (Nu) within a few per cent with 
only a slight overprediction at the smallest angle (30’) 
and a slight underprediction at the largest (7Y). All 
the above methods, which share the same 322-volume 
computational grid, predict fairly well the angle 
dependence of (Nu); on the other hand, standard k- 
E computations, using the coarser 243-volume grid, 
fail to reproduce this and give over the whole range 
considered an almost uniform average Nusselt 

number, which crosses transversally the curves relative 
to the other methods and to the experimental data. 

A comparison of predictive and experimental litera- 
ture values of the average heat/mass transfer 
coefficients is given in Fig. 11 for P/H, z 2, Re c 2000 
and 0 varying between 0 and 180“. They are all ex- 
pressed in the form of an average Colburn j factor, 
which allows the mass transfer data of Focke et al. [4] 
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and Gaiser and Kottke [5] to be included. Thej factor 
is defined as: 

. 
,j = Nu/(Re Pro ‘) (heat transfer) (29a) 

j = Sh/(Re SC” ‘) (mass transfer) Wb) 

Sh and SC being the Sherwood and Schmidt numbers, 
respectively (mass-transfer analogues of the Nusselt 
and Prandtl numbers NM, I+). Computational results 
are all from low-Reynolds number k--E simulations. 
Over this wider range of 8, the overall behaviour of 
(Nu) is predicted fairly well; however, an under- 

0 30 60 90 120 150 180 
Included angle 

prediction by -20% is obtained for large included 

Fig. 11. Comparison between low-Re k--E predictions and 
angles. It should be observed that (Nu) increases by 

experimental literature results for the average heat/mass only a factor 3-5 when Q increases from 0 to 180”, i.e. 

transfer coefficient. exnressed as Colburn i-factor (P/H. x 2. much less than the equivalent friction coefficient in 
” Re 2 2000). Fig. 8. 
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Fig. 12. Nusselt number in consecutive cells for P/H, = 3.67, 
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3.2.2. Dezdoping.flow (entry efficts). Entry effects 
on the average Nusselt number are shown in Fig. 
12. Values of (Nu) predicted by using laminar flow 
assumptions and the standard or low-Reynolds num- 

ber turbulence models are reported as functions of the 
cell number frotn the intake for P/H, = 3.67, 
Re 2 3400 and 0 = 36 , i.e. for the same geometry 

and flow rate as in Fig. 9. 
Much the same remarks hold as for the friction 

coefficient in Fig. 9. Significant entry effects, close to 

those which are experimentally observed, are pre- 
dicted only by laminar flow simulations or by the 
low-Reynolds number turbulence model. The latter 
reproduces better the measured (Nu) values both in 
developing and in fully developed flow (corresponding 
to cell No. 5 in the experiments). Coarse-grid k- 
c/‘wall-function’ computations fail to reproduce entry 
effects, though they predict fairly well the fully 

developed levels of the average Nusselt number. 

3.3. Flowjfield 
Flow fields in crossed-corrugated passages of the 

type considered here were studied by Focke and 
Knibbe [25] using flow-visualization by o-cre- 
solphthalein in water (electrode-activated pH indi- 
cator). The results are also discussed by Focke et ul. 
[4]. These authors concluded that for 0 < 0 < 160”, 
apart from side wall reflections, the flow follows 
mainly the furrows on each plate, Fig. 13(a). The 
essential feature of the flow for these angles is the two 
sets of criss-crossing streams which induce secondary 

swirling motions. The driving force that produces 
swirl in a furrow is the velocity component of the 
fluid moving along the opposite duct in a direction 
perpendicular to the furrow, which is proportional to 
U sin f3 and therefore at a maximum for 0 = 90 ‘_ For 
larger angles, the interaction between the fluid streams 
becomes negative, i.e. crossing streams have a retard- 
ing effect on each other owing to their dominating 
velocity components being in opposite directions. As 
0 increases to - 160’, presumably due to this retarding 
effect, a change in flow pattern is observed: the fluid 

still flows mainly along the furrows, but reflections 

occur between contact points, yielding zig-zag pat- 

terns in parallel, Fig. 13(b). Pressure drop and heat 

transfer are now at a maximum. For Q = ISO’-, the 
phase shift between the plates (which now have their 
furrows parallel to each other, but normal to the flow) 
must also be specified. For zero shift. the flow sep- 
arates on each furrow even for RL’ as low as 20; the 

separated flow regions grow in size with increasing Re 
until they fill the major part of the furrows. Pressure 
drop and heat transfer rates, however, are slightly 
lower than for 0 z 160 ‘. The authors argued that. at 
intermediate angles, the swirling motions induced by 
the streams criss-crossing along the furrows are the 
main determinant in heat or mass transfer. 

Indications on the flow structure in arrays of 
crossed-corrugated ducts also come from the exper- 
iments of Gaiser and Kottke [5] which. however, were 
mainly performed in order to measure local mass 

transfer coefficients (see Section 3.4 below). These 
studies confirm that, for included angles below - 140”, 

the fluid flows mainly along the furrows of the plates 
as in Fig. 13(a), while for larger angles it describes a 
zig-zag pattern and is predominantly aligned with the 

main flow direction, Fig. 13(b). 
The present numerical simulations concentrate 

mainly on included angles up to 75 ‘, which are those 
of highest practical interest in heat exchanger appli- 
cations. Typical comparative fluid flow predictions 
from all the modelling approaches that have been used 
are reported in Figs. 14-16 for the case P/H, = 4, 
0 = 36 and Re z 3000. The main flow direction and 
the reference velocity U are indicated. 

Figure 14 shows the predicted velocity fields in the 
midplane ,I’ = 0. Laminar results (a) exhibit a marked 
concentration of the fluid flow in the central portion 
of the midplane; two symmetric regions where the 
fluid turns around the contact points M, N between 
upper and lower plate are clearly visible, and a wake 
region downstream of the contact point 0 is also 

evident. The k-c: turbulence model (b), probably due 
also to the coarser grid used, predicts a much flatter 
velocity distribution, with few significant features. An 
intermediate behaviour is exhibited by the low-Reyn- 
olds number k--E predictions (c). Finally, time-aver- 
aged results from large-eddy simulation (d) look very 
similar in this plane to laminar predictions, with a 
marked concentration of the flow in the central region. 

Figure 15 reports the predicted in-plane velocity 
fields for the section C-C in Fig. 2. Laminar results 
(a) exhibit characteristic parabolic profiles in the 
lower duct. The k-c turbulence model (b) gives also 
for this section very flat profiles, while intermediate 
results are obtained using the low-Reynolds number 
model (c). In this plane, time-averaged LES results (d) 
are very close to the low-Reynolds number turbulent 
predictions, with velocity profiles less peaked than for 
laminar flow. 

Figure 16 reports the in-plane velocity fields for the 
cross-section N-N in Fig. 2, normal to the axis of the 
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Fig. 13. Flow patterns in crossed-corrugated ducts. (a) Moderate included angle; (b) large included angle. 

upper duct. The scale is enhanced in order to evidence 
the swirling flow patterns, and the (high and uninter- 
esting) velocities in the lower duct are not shown. 
There are substantial differences between the flow pat- 
terns predicted by different modelling approaches. In 

particular, both the standard and the low-Reynolds 
number turbulence model (b, c) predict a single 
vortex, centred roughly on the axis of the duct; lami- 
nar and large-eddy simulations (a, d) give results very 
close to each other and characterized by a more com- 
plex secondary flow pattern, with the main vortex 
shifted downstream along the main flow direction (i.e. 
to the right in the figures), and a secondary vortex 
clearly visible in the upstream side of the cross-section 
(on the left in the figures). The predicted intensity of 
the swirl, on the other hand, does not change much 
when different models are used. Further predictions of 
secondary swirling flow in crossed-corrugated ducts, 

obtained using either laminar flow assumptions or the 
standard k--E model with ‘wall functions’, were also 
presented by Henry et al. [26]. 

As mentioned above, Focke et al. [4] stressed the 
importance of swirl in promoting heat (mass) transfer 
in the present geometry. Unfortunately, detailed vel- 
ocity measurements are not available to validate the 
present numerical simulations; some further results 
obtained by large-eddy simulation are shown in Figs 
17-19 in order to illustrate the influence of Re, 0 and 
P/H, on the intensity and flow pattern of the swirl. 

Figure 17 shows that the relative intensity of the 
swirl increases markedly with the Reynolds number; 
the ratio of swirling flow rate to main flow rate 
increases from - 1 to N 5% as Re increases from 780 
to 4250. Figure 18 shows that, as the included angle 0 
increases, both the relative intensity and the com- 
plexity of the swirling flow increase; for Q = 60”, as 
many as four independent vortices develop in the 
cross-section of the duct. Finally, Fig. 19 compares 
the swirl patterns predicted for the same Re and 0 but 
for two different values of the pitch to height ratio; as 
P/H, increases, the relative swirling flow rate increases, 

but secondary vortices disappear and a single recir- 
culation region is established. 

3.4. Distribution of the local heat transfer coefjcient 
In order to understand the influence of the geo- 

metrical parameters on heat transfer and to design 
optimized geometries, a knowledge of the distribution 
of the local heat transfer coefficient is of no less 
importance than the knowledge of its average value. 
Figure 20 reports experimental and predicted maps of 
the local Nusselt number on the top (active) wall of a 
unitary cell for P/H, = 4,0 = 37” and Re z 3900. The 
experimental distribution [2] was obtained by LCT 
and true-colour digital image processing for the fifth 
cell from the intake of the wind tunnel test section, 
where fully developed conditions can be assumed to 
have been attained; numerical results are for periodic 
flow and thermal fields. The thermal boundary con- 

ditions are those described by equations (27a) and 
(27b), which reproduce closely the experimental con- 
ditions; however, very similar results are obtained by 
setting uniform-wall temperature or uniform-wall flux 
conditions. Maxima and (local) minima of Nu are 
indicated by closed triangles and circles, respectively; 
of course, the absolute minimum of Nu is attained in 

all cases at the four contact (corner) points. 
As discussed in ref. [3], the experimental dis- 

tribution (a) exhibits a region of intense heat transfer 
near the downstream end of the right edge of the cell, 
i.e. in correspondance with impingement on the upper 
plate by the fluid stream flowing in the lower furrow. 
Low heat transfer is observed along the upper furrow 
(almost undisturbed channel flow). Very low heat 
transfer rates are observed in the stagnation regions 
surrounding the four contact points between plates. 

Clearly, the experimental distribution of Nu is best 
reproduced by large-eddy simulation (b), which pre- 
dicts correctly also the values and locations of mini- 
mum and maximum, and the average value (Nu) 
( - 22 for this configuration). Laminar and Iow-Reyn- 
olds number turbulent predictions (c, e) possess the 
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14. Predicted velocity fields in the midplane for P/H, = 4, fl = 37' and Re z 3000. (a) Lamina 
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Fig. 15. Predicted velocity fields in the section C C parallel to the lower furrow for P/H~ = 4, 0 = 37 ~ and 
Re ~ 3000. (a) Laminar  flow; (b) standard k e model with 'wall functions'; (c) low-Reynolds number  

turbulence model; (d) LES (time-averaged). 
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Fig. 16. Predicted velocity fields in the cross-section N N normal to the upper furrow for P/H,  = 4, 0 = 37' 
and Re ~ 3000, showing swirling flow. (a) Laminar flow; (b) standard k e model with 'wall functions'; (c) 

low-Reynolds number turbulence model; (d) LES (time-averaged). 
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Fig. 17. Swirling flow in the cross-section N N normal to the upper furrow predicted by LES for P/H~ = 4, 
0 = 37" and increasing Reynolds number. (a) Re = 780; (b) Re = 2450; (c) Re = 4250. 

a 

U 

Fig. 18. Swirling flow in the cross-section N N normal to the upper furrow predicted by LES for P/Hi = 4, 
Re ~ 2500 and increasing included angle 0. (a) 0 = 37°; (b) 0 = 48°; (c) 0 = 60 °. 
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Fig. 19. Swirling flow in the cross-section N-N normal to the upper furrow predicted by LES for Re ~-, 2500, 
0 = 37 ° and different values of P/HL. (a) P/Hi = 4.00; (b) P/Hi = 2.22. 
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Fig. 20. Distribution of the local Nusselt number on the upper (active) wall of a unitary cell for P/H, = 4.00, 
0 = 37" and Re = 3900. (a) Experimental measurements by LCT [2]; (b) LES; (c) laminar flow; (d) standard 

k--E model; (e) low-Re turbulence model. 



Flow and heat transfer in corrugated passages-11 

Fig. 21. Distribution of the local Nusselt number on the upper (active) wall of a unitary cell for P/H, = 4.00, 
0 = 60 and Re = 2400. (a) Experimental measurements by LCT [2]; (b) LES. 

same correct qualitative features, differing only quan- 

titatively in the levels of Nu; the better agreement with 
the experiments is given, as expected, by the latter 
method. In both cases. the location of the minimum 
is (wrongly) predicted to be in the upstream portion 
of the furrow, while the position of the maximum is 
fairly well computed. The standard k--E model with 
‘wall functions’ (d) gives a flat distribution of NM, 
with few distinctive features; no local minimum is 

predicted, and the location of the maximum is uncer- 
tain (a uniformly high-l\iu ‘strip’ is predicted along 
the right edge). However, the computed average value 
of NM is - 23, which differs very little from the exper- 
imental and LES result (-22). 

An additional comparison of experimental and LES 
distributions of NM on the top wall of the unitary cell 
in fully developed flow is given in Fig. 21 for P/H, = 4, 
0 = 60' and Re z 2400. A good agreement is again 
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Fig. 22. Behaviour of the three velocity components at a monitoring point (centre of face U in Fig. 2) for 
P/H, = 4.00, 6 = 37”, Re zz 2500 using LES (c, = 0.08) or direct simulation (c. = 0). 
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Fig. 23. Behaviour of the average Nusselt number predicted 
for P/H, = 4.00, 0 = 37" and increasing Reynolds numbers 
using a 32’-volume grid with and without a subgrid model. 

observed; note in particular the twin local maxima 
near the right edge and the location of the minimum 

in the furrow. For the average Nusselt number, a 
value of -26 is obtained in this case both from the 
experiments and from LES. 

3.5. Time-dependent direct simulation/large-eddy 
simulation results 

Time-dependent results from direct and large-eddy 
simulations deserve some further discussion, as they 
elucidate better than steady-state or time-averaged 
predictions the mechanisms responsible for mixing 
and heat transfer enhancement. 

First, it should be observed that comparative 
numerical results tend to confirm the a priori assess- 
ment of direct vs large-eddy simulation discussed in 
Section 2.2. The behaviour of the three velocity com- 
ponents II, C, M’ at a monitoring point (centre of the 
outlet U of the upper duct) is reported in Fig. 22 for 
the case B = 37 ‘, Re z 2500 as computed with a 323- 
volume grid by DS and LES. With a subgrid model, 
velocities exhibit oscillations of roughly constant 
amplitude; without, after four LETOTs velocity fluc- 
tuations tend to grow excessively. 

On the other hand, using the subgrid model at low 
Re did not produce significant effects. Figure 23 
reports the time behaviour of the average Nusselt 
number predicted by the same grid as above for 
0 = 37’ and increasing Re with and without a subgrid 
model; clearly, the subgrid terms do not affect the 
results significantly for Re < 2500. This shows that, 
although the Smagorinsky-Lilly model presents the 
obvious disadvantage of predicting non-zero subgrid 
diffusivities in laminar flow, for low Reynolds num- 
bers and sufficiently find grids v, and a, are small 

compared with the molecular diffusivities, and their 
influence on the flow and thermal fields is negligible. 

Note that in all cases, starting from the uniform 
temperature initial conditions, (Nu) decreases for 
about three LETOTs and attains asymptotic values 
within five. 

When the subgrid model was used, simulations 
repeated for the reference case with 32’- and 423- 

volume grids did not show significant differences; 

coarser grids (e.g. 243 volumes) gave markedly differ- 

ent results and exhibited numerical ‘wiggles’ [ 191. 

Thus, all final simulations were run with the subgrid 
model and 32’-volume grids. 

The velocity fluctuations in Fig. 22 exhibit a clear 
dominant frequency F; once made dimensionless as a 
Strouhal number FT (T = da/U being the time neces- 
sary for the flow to cross the unitary cell), this was 
found to be about three for all values of Re and 8. 
Note that u and w are out of phase by about 180”, 
suggesting that the velocity vector ‘swings’ (mostly 

in the horizontal plane) without changing much in 
amplitude. The physical mechanism yielding these 
oscillations is clarified by Fig. 24, which compares the 
time-averaged (a), instantaneous (b) and fluctuating 
(c) velocity fields in the midplane y = 0 for the same 
case (the reference velocity U is indicated). In the 
central, ‘meandering’ region of the midplane, an eddy 
pattern is clearly superimposed on the mean flow; a 
detailed examination of instantaneous and fluctuating 
flow fields shows that the eddies are strongly three- 
dimensional, though their largest component is verti- 
cal. These midplane eddies seem to arise from the 
instability of the ‘spiral’ shear layer bounded by the 

two skewed fluid streams which how in the upper and 
lower furrows of the corrugated plates. As expected, 
their intensity was found to increase both with the 

Reynolds number (Fig. 25) and with the corrugation 
angle (Fig. 26), and to be negligible below Re z 1000 
(at least for moderate angles 0). 

It should be observed that in LES the main effect 

of the subgrid model is to build an appreciable subgrid 
viscosity in this midplane high-shear region; this is 
shown in Fig. 27 for the same reference case as above. 
The subgrid viscosity and the associated subgrid ther- 
mal diffusivity have the beneficial effect of limiting 
flow fluctuations while at the same time contributing 

to cross-stream heat transfer. Note that v, does not 
exceed -50% of v, which suggests that an accurate 
modelling of the subgrid terms is not crucial at the 
present, low Reynolds numbers. 

4. CONCLUSIONS 

Numerical predictions were obtained for the flow 
and thermal fields in a crossed-corrugated geometry 
under transitional and weakly turbulent conditions, 
and were compared with well-controlled experimental 
data. The influence of Reynolds number, included 
angle and pitch-to-height ratio was investigated, and 
alternative turbulence modelling approaches were 
tested. 

The standard k--E model with ‘wall functions’, while 
acceptable at high Reynolds numbers and/or included 
angles, otherwise failed to reproduce the correct values 
of J’ and (Nu), and gave poor predictions of entry 
effects and of the local Nusselt number distribution; 
also, it was completely inapplicable to Reynolds num- 
ber lower than -2000. On the other hand, simple 
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Fig. 24. Midplane velocity fields predicted by LES for P/H, = 4.00. 0 = 37^, Re = 2450. (a) Time-aver; aged 
over LETOTs 4-5; (b) instantaneous at t = 4 LETOTs; (c) fluctuating at t = 4 LETOTs [ = (b) - (a )I. 
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Fig. 25. Instantaneous midplane velocity fields predicted by LES at t = 4 LETOTs for P/H, = 4.00,8 = 37” 
and increasing Reynolds number. (a) Rr = 780; (b) Re = 2450; (c) Re = 4250. 
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Fig. 26. Instantaneous midplane velocity fields predicted by LES at t = 4 LETOTs for P/H, = 4.00, 
Re z 2500 and increasing included angle. (a) 0 = 37”; (b) lI = 48’; (c) 0 = 60”. 

laminar flow assumptions yielded acceptable results 
only for Re < - 3000 and moderate angles 8. The best 
overall agreement with measured friction factors and 
average or local heat transfer coefficients on the whole 
range of the parameters was obtained by using either 
a low-Reynolds number k-c model or LES. The latter 
method was only slightly more computationally 
expensive (for a given grid) than the low-Re model, 

while providing much more information on the flow 
behaviour. 

A significant swirling flow, induced by the inter- 
action with the fluid flowing in the conjugate duct, 
was predicted in the cross-section of each furrow. Its 
(relative) intensity was found to increase with increas- 
ing Re, 9 and P/H,; its complexity was found to 
increase with Re and 0 but to decrease with P/H,. 
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Fig. 27. Time-averaged subgrid viscosity predicted by LES in the plane C-C (parallel to the lower furrow) 
for P/H, = 4.00. 0 = 37’ and Re = 2450. 

The swirl intensity was positively correlated with heat 
transfer rates; this, however, does not necessarily 
imply a causal effect of swirl on heat transfer enhance- 
ment. Experimental data and computational results, 
particularly from LES, suggest that the principal 
mechanism responsible for enhanced mixing and heat/ 
mass transfer in this geometry is the instability of 
the ‘spiral’ midplane shear layer bounded by the two 
skewed fluid streams flowing in the upper and lower 
corrugations. This generates quasi-periodic eddies, 
particularly intense in the midplane region, which 
become progressively more intense and irregular as 
the Reynolds number or the angle Q increase, and 
contribute significantly to heat transfer. In periodic 
(fully developed) flow, LES results suggest the exis- 
tence of a dominating frequency F in the velocity 
fluctuations which, once normalized by U/Au, is -3 
in a wide range of RP and 0. The periodic contraction 
of the cross-section presumably induces a repeated 
relaminarization, which keeps turbulence levels rela- 

tively low. Classic wall turbulence (which would be 
the dominant heat transfer mechanism in a straight 
duct) seems to play a secondary role, at least if Re and 

0 are not too high. 
For 0 increasing from zero to - 160., the equivalent 

friction coefficient increases by more than two orders 
of magnitude, while the average Nusselt number 
increases only by three to five times. At moderate 

Reynolds numbers and angles 0 the crossed-cor- 
rugated and similar geometries can give a significant 
enhancement of heat transfer (as compared with 
straight ducts) without an undue increase of pressure 
losses. Of course, this combination of performance is 
the most desirable for engineering applications. 
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